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What is an order of growth?

An order of growth is a function depicting how something (often runtime or memory 
usage) increases, or “grows”, with respect to some input.

We can use orders of growth to assert the efficiency of our code. If runtime and 
memory usage don’t scale up too quickly, our code is probably efficient!



Looks innocent enough, right?



Two hours later...



THEY’RE EVERYWHERE



Motivating Example

You have been dealt a hand of cards,1 and you want to 
sort them by rank. Which algorithm would you rather 
use to do that? (Both are correct, at least if you 
subscribe to the infinite monkey theorem.)

● Bogosort. See if your cards are sorted; if not, 
shuffle them into a random order. Repeat until 
the cards do turn out to be sorted.

● Insertion sort. Go through your cards one by one 
and place each into the appropriate position 
within all of the already-processed cards.

1 Such is life.



Motivating Example

You have been dealt a hand of cards, and you want to 
sort them by rank. Which algorithm would you rather 
use to do that? (Both are correct, at least if you 
subscribe to the infinite monkey theorem.)

Hopefully you chose insertion sort! Intuitively it’s 
better, right? In more concrete terms, time 
complexity for insertion sort is O(n2), as opposed to 
bogosort’s deterministic O((n + 1)!).

To get a sense of the difference in scale, 102 is 
100. (10 + 1)! is 39,916,800.



Standard Approximations

We group our growth functions into “classes” (orders), without worrying too much 
about the specifics within each class.

Imagine you had the growth functions 4n, 4n2, and 5n2 + 1. Asymptotically (meaning 
as n gets really big), the difference between 4n2 and 5n2 + 1 is nothing compared 
to the difference between 4n2 and 4n. When grouping our functions into classes, 
we’ll want to divide them up according to this type of asymptotic disparity. Thus, 
we adhere to the following simplifications:

1. Drop lower-order terms (the “+ 1” in “5n2 + 1”).
2. Drop multiplicative constants (the “5” in “5n2 + 1”).



Standard Approximations

If the number of constant-time ops to perform were exactly...

● ...n3 + 40000n2.1, the time complexity would be O(n3).
● ...25n3, the time complexity would be O(n3).
● ...25n3 + 40000n2.1, the time complexity would be O(n3).

These growth functions are all part of the same order, O(n3).
Note that everything here is in terms of the input size n.



Hope for the Best, Plan for the Worst

Don’t make any assumptions that aren’t explicitly stated. In other words, think 
about what happens for the worst-case input. This’ll cover all the possibilities!

Say I have an algorithm to sort those cards from before. The best-case input is a 
hand of cards that’s already sorted. But if I always assume that,1 then even 
bogosort will appear to be O(1)!

If we want a order of growth that’s truly representative, we’re going to have to 
consider the most unfortunate cases: spindly binary trees, massive inputs, the 
like.

1 If you’re looking for the one true sort, check out intelligent design sort.

http://www.dangermouse.net/esoteric/intelligentdesignsort.html


A Few Other Notes

● “Number of constant-time steps you have to execute” is just another way to 
describe runtime.

● “Time complexity” means “the order of growth of the runtime with respect to 
some input.”

● It’s really the large inputs we care about! Order of growth doesn’t matter 
for small inputs, since those can usually be run pretty quickly regardless of 
the algorithm.

● I use “O” throughout these slides, but I always mean it as Θ.
(For those interested, I use O because typing Θ stresses me out.)



Question 0

Determine the order of growth that best describes the worst-case execution time (measured 
by the quantity of constant-time operations) of a call to mystery0 as a function of n.

^ Hilfinger wording. Example answers: O(1), O(n), O(n2)...

def mystery0(n):
total = 0
for i in range(n):

total *= i
for i in range(n // 2):

total += i
return total



Question 0 Solutions

Determine the order of growth that best describes the worst-case execution time (measured 
by the quantity of constant-time operations) of a call to mystery0 as a function of n.

^ Hilfinger wording. Example answers: O(1), O(n), O(n2)...

def mystery0(n):
total = 0
for i in range(n):

total *= i
for i in range(n // 2):

total += i
return total

O(n). We consider all of the lines with “total” in them 
to be constant time, and these happen 1 + n + n/2 times. 
Thus, the “overly detailed” growth function is
3/2 * n + 1 and the associated order is O(n).

In other words, we do O(1) work plus O(n) work plus O(n) 
work, which is just O(n) work after dropping constant 
multipliers and lower-order terms.



How to identify the time complexity of a function

Go through the function line by line, determining roughly how much time each block 
of code takes as a function of the input. Then sum all of your estimations 
together and drop constant multipliers / lower-order terms. That’s pretty much it.

If there’s recursion, figure out how much work there is to be done in each call 
and how many calls there’ll be. Then multiply those values together.

---

(When calculating the order of growth, we’re always just summing up the amount of 
work done overall. Think 1 + 1 + 1 + 1, where each 1 represents a constant-time 
step.)



The main orders of growth to know
Descriptions will assume we’re interested in time complexity

● O(1); constant time. Runtime is 
not affected by the input size.

○ “Theoretical runtime is 
upper-bounded by a constant”

def const(n):
for _ in range(500):

print(‘spam i am’)

● O(logn); logarithmic time. 
Multiplying the input size by some 
constant will only add some 
constant to the runtime.

○ “Make multiplicative progress / 
divide the problem size in half 
upon every step”

def log(n):
if n <= 1:

return 1
return n * log(n // 2)



The main orders of growth to know
Descriptions will assume we’re interested in time complexity

● O(n); linear time. Adding a 
constant to the input size will 
add a constant to the runtime.

○ “Sequential scan through a list”

def lin(n):
if n <= 1:

return 1
return n + lin(n - 1)

● O(n2); quadratic time.

○ “Double for-loops” (but not always; 
watch out for tricks!)

def quad(n):
if n <= 1:

return 1
return lin(n) * quad(n - 1)



The main orders of growth to know
Descriptions will assume we’re interested in time complexity

● O(cn); exponential time. Adding to the input size will multiply the runtime.

○ Denotes problems as “intractable”
○ Runtime increases very quickly relative to the input size
○ Often describes tree recursion

def exp(n):
if n <= 1:

return 1
return exp(n - 1) * exp(n - 1)



The main orders of growth to know
Descriptions will assume we’re interested in time complexity

There’s also stuff like O(sqrt(n)) and O(nlogn).

For O(sqrt(n)) to happen, there’ll usually have to be a square or a square root in 
the algorithm somewhere.

For O(nlogn) to happen, you’ll generally just be doing n work logn times (or logn 
work n times).

def nlogn(n):
for _ in range(n):

_ = log(n) # the log-time function defined three slides ago



A General Timing Comparison

n = 10 n = 50 n = 100 n = 1000

logn 0.0003s 0.0006s 0.0007s 0.0010s

sqrt(n) 0.0003s 0.0007s 0.0010s 0.0032s

n 0.0010s 0.0050s 0.0100s 0.1000s

nlogn 0.0033s 0.0282s 0.0664s 0.9966s

n2 0.0100s 0.2500s 1.0000s 100.00s

n6 1.6667m 18.102d 3.1710y 3171.0c

2n 0.1024s 35.702c 4x1016c 1x10166c

n! 362.88s 1x1051c 3x10144c 1x102554c

← Time required to process n 
items at a speed of 10,000 
operations per second, using 
eight different algorithms

s = seconds
m = minutes
d = days
y = years
c = centuries

Source: 
http://www.ccs.neu.edu/home/jaa
/CS7800.12F/Information/Handout
s/order.html

http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html


Graphical Summary



Questions
For each code segment, determine the order of growth of the runtime as a function of n.



Question 1

def mystery1(n):
if n <= sqrt(abs(n)):

return n
return n + mystery1(n // 3)

http://www.youtube.com/watch?v=UVSnYAQ7aj0


Question 1 Solutions

def mystery1(n):
if n <= sqrt(abs(n)):

return n
return n + mystery1(n // 3)

O(logn). n <= sqrt(abs(n)) will only be hit 
when n <= 1.



Question 2

def mystery2(n):
while n > 1:

x = n
while x > 1:

print(n, x)
x = x // 2

n -= 1



Question 2 Solutions

def mystery2(n):
while n > 1:

x = n
while x > 1:

print(n, x)
x = x // 2

n -= 1

O(nlogn). Inner loop is O(logn), and it 
happens O(n) times.



Question 2 Follow-Up

What if we switch the updates from the inner and outer loop? (Updated version below.)

def mystery2f(n):
while n > 1:

x = n
while x > 1:

print(n, x)
x -= 1

n //= 2



Question 2 Follow-Up Solutions

What if we switch the updates from the inner and outer loop? (Updated version below.)

def mystery2f(n):
while n > 1:

x = n
while x > 1:

print(n, x)
x -= 1

n //= 2

O(n). This is O(n) (not O(nlogn)) because the total amount of work done is approximately n + 
n / 2 + n / 4 + ... + 1. Before this change, the total amount of work would be about log(n) + 
log(n - 1) + log(n - 2) + ... + 1, which is of course different.



Question 3

def mystery3(n):
result = 0
for i in range(n // 10):

result += 1
for j in range(10):

result += 1
for k in range(10 // n):

result += 1
return result



Question 3 Solutions

def mystery3(n):
result = 0
for i in range(n // 10):

result += 1
for j in range(10):

result += 1
for k in range(10 // n):

result += 1
return result

O(n). The number of iterations in the j-loop is 
based on a constant, and for large values of n 
(specifically when n > 10) there are 0 iterations 
in the k-loop.



Question 4

def mystery4(n):
total = 0
for i in range(1, n):

total *= 2
if i % n == 0:

total *= mystery4(n - 1)
total *= mystery4(n - 2)

elif i == n // 2:
for j in range(1, n):

total *= j
return total



Question 4 Solutions

def mystery4(n):
total = 0
for i in range(1, n):

total *= 2
if i % n == 0:

total *= mystery4(n - 1)
total *= mystery4(n - 2)

elif i == n // 2:
for j in range(1, n):

total *= j
return total

O(n). The first if-statement never happens, 
and the second only happens once.



Question 5

def mystery5(n):
n, result = str(n), ‘’
num_digits = len(n)
for i in range(num_digits):

result += n[num_digits - i - 1]
return result



Question 5 Solutions

def mystery5(n):
n, result = str(n), ‘’
num_digits = len(n)
for i in range(num_digits):

result += n[num_digits - i - 1]
return result

O(logn).
str(n) is O(logn); len(n) is O(1).

1 We’re not interested in bit-level complexity here.

1. str(n) is O(logn) because you have to 
MULTIPLY n by your radix in order to 
ADD one digit to your output string.

2. len(n) is O(1) because Python strings 
keep track of their own length, but 
you should realize that it’s at worst 
O(logn) for the same reasons as 1; 
there are only O(logn) digits.

3. Since there are only O(logn) digits, 
the loop simply performs 
constant-time1 indexing and addition 
O(logn) times.



Question 6

def mystery6(m, n):
result = 0
for i in range(1, m):

j = i * i
while j <= n:

result, j = result + j, j + 1
return result

Here, the order of growth should be a function of m and n.



Question 6 Solutions

def mystery6(m, n):
result = 0
for i in range(1, m):

j = i * i
while j <= n:

result, j = result + j, j + 1
return result

O(m + n√n). The outer loop happens m times no matter what (doing guaranteed constant work), 
while the inner loop only runs when i <= √n (i.e. it does n work √n times).

Here, the order of growth should be a function of m and n.



Useful Formulas

● 1 + 2 + 3 + … + n = n(n + 1) / 2 = O(n2)

● The total number of nodes in a full tree with branching factor B and height H 
is (BH + 1 - 1) / (B - 1).
○ The branching factor is the maximum number of children that any 

individual node can have (for a binary tree, B = 2).
○ Remember that a tree with only one level has height 0.
○ This means that for a full tree, the number of nodes is exponential in 

its height! [i.e. for height H, the number of nodes is O(BH)]

One reason this is useful: you’ll often want to think about recursive functions’ orders of growth by drawing 
their associated tree of calls. This formula might allow you to determine the worst-case number of calls, and 
then you just have to multiply by the amount of work in each one. Notice that the height of the call tree is 
usually just the maximal length of a path from the initial call (the root) to the base case (a leaf)!



Useful Formulas

● The branching factor of this 
tree is 3 and the height is 
also 3, so the maximum 
(worst-case?) number of nodes 
in this tree is

  (33 + 1 - 1) / (3 - 1)
= 80 / 2
= 40

You can see from the numbering 
that this checks out!



Question 7

def mystery7(n):
if n < 1:

return n
def helper(n):

i = 1
while i < n:

i *= 2
return i

return mystery7(n / 2) + mystery7(n / 2) + helper(n - 2)



Question 7 Solutions

def mystery7(n):
if n < 1:

return n
def helper(n):

i = 1
while i < n:

i *= 2
return i

return mystery7(n / 2) + mystery7(n / 2) + helper(n - 2)

O(nlogn). We make O(2logn) = O(n) recursive calls, and each recursive call does logn work.
WAIT WE MAKE O(2logn) RECURSIVE CALLS? HOW DO WE KNOW THAT? MAYBE WE SHOULD CONSULT THE 
THIRD-TO-LAST SLIDE!!



Question 8

Define n to be the length of the input list. How much memory does the following program use 
as a function of n?

def weighted_random_choice(lst):
temp = []
for i in range(len(lst)):

temp.extend([lst[i]] * (i + 1))
return random.choice(temp)



Question 8 Solutions

Define n to be the length of the input list. How much memory does the following program use 
as a function of n?

def weighted_random_choice(lst):
temp = []
for i in range(len(lst)):

temp.extend([lst[i]] * (i + 1))
return random.choice(temp)

O(n2). The length of the temporary list is 1 + 2 + 3 + … + n, which we know (through the 
summing formula from the last slide but four) is equal to n(n + 1) / 2 = O(n2).



Summer 2013 MT2  |  Q2(a)

def fizzle(n):
if n <= 0:

return n
elif n % 23 == 0:

return n
return fizzle(n - 1)

What is the order of growth for a call to fizzle(n)?



Summer 2013 MT2  |  Q2(a) Solutions

def fizzle(n):
if n <= 0:

return n
elif n % 23 == 0: # this line ensures that fizzle will never be called more than 23 times

return n
return fizzle(n - 1)

What is the order of growth for a call to fizzle(n)?
Answer: O(1).



Summer 2013 MT2  |  Q2(b)

def boom(n):
if n == 0: return ‘BOOM!’
return boom(n - 1)

def explode(n):
if n == 0: return boom(n)
i = 0
while i < n:

boom(n)
i += 1

return boom(n)

What is the order of growth for a call to explode(n)?



Summer 2013 MT2  |  Q2(b) Solutions

def boom(n):
if n == 0: return ‘BOOM!’
return boom(n - 1)

def explode(n):
if n == 0: return boom(n)
i = 0
while i < n:

boom(n) # n work (happening n times because of the loop)
i += 1

return boom(n)

What is the order of growth for a call to explode(n)? O(n2).



Summer 2013 MT2  |  Q2(c)

def dreams(n):
if n <= 0:

return n
if n > 0:

return n + dreams(n // 2)

What is the order of growth for a call to dreams(n)?



Summer 2013 MT2  |  Q2(c) Solutions

def dreams(n):
if n <= 0:

return n
if n > 0:

return n + dreams(n // 2) # divide the problem in half every time

What is the order of growth for a call to dreams(n)?
Answer: O(logn).



Spring 2014 MT2  |  Q6(a)

Consider the following function (assume that parameter S is a list):

def umatches(S):
result = set()
for item in S:

if item in result:
result.remove(item)

else:
result.add(item)

return result

Fill in the blank: The function umatches returns the set of all
_________________________________________________________________________.



Spring 2014 MT2  |  Q6(a) Solutions

Consider the following function (assume that parameter S is a list):

def umatches(S):
result = set()
for item in S:

if item in result:
result.remove(item)

else:
result.add(item)

return result

Fill in the blank: The function umatches returns the set of all
values in S that occur an odd number of times.



Spring 2014 MT2  |  Q6(b)

def umatches(S):
result = set()
for item in S:

if item in result:
result.remove(item)

else:
result.add(item)

return result

Let’s assume that the operations of adding to, removing from, or checking containment in a 
set each take roughly constant time. Give an asymptotic bound (the tightest you can) on the 
worst-case time for umatches as a function of N = len(S).



Spring 2014 MT2  |  Q6(b) Solutions

def umatches(S):
result = set()
for item in S: # this is why it’s O(N)

if item in result:
result.remove(item)

else:
result.add(item)

return result

Let’s assume that the operations of adding to, removing from, or checking containment in a 
set each take roughly constant time. Give an asymptotic bound (the tightest you can) on the 
worst-case time for umatches as a function of N = len(S).
Answer: O(N).



Spring 2014 MT2  |  Q6(c)

def umatches(S):
result = []
for item in S:

if item in result:
result.remove(item)

else:
result.append(item)

return result

Suppose that instead of having result be a set, we 
make it a list (so that it is initialized to [] and 
we use .append to add an item; updated version to 
the left). What now is the worst-case time bound? 
You can assume that .append is a constant-time 
operation, and .remove and the in operator require 
time that is Θ(L) in the worst case, where L is the 
length of the list operated on. Since we never add 
an item that is already in the list, each value 
appears at most once, just as for a Python set.



Spring 2014 MT2  |  Q6(c) Solutions

def umatches(S):
result = []
for item in S:

if item in result:
result.remove(item)

else:
result.append(item)

return result

Suppose that instead of having result be a set, we 
make it a list (so that it is initialized to [] and 
we use .append to add an item; updated version to 
the left). What now is the worst-case time bound? 
You can assume that .append is a constant-time 
operation, and .remove and the in operator require 
time that is Θ(L) in the worst case, where L is the 
length of the list operated on. Since we never add 
an item that is already in the list, each value 
appears at most once, just as for a Python set.

Answer: O(N2). In the worst case, where every item in S is the same, you have to do two Θ(L) 
operations (in and .remove) for N / 2 items in S. Since L is really O(N), we have an O(N2) 
function overall.



Spring 2014 MT2  |  Q6(d)

def umatches(S):
result = []
for item in S:

if item in result:
result.remove(item)

else:
result.append(item)

return result

Now suppose that we consider only cases where the number of different values in list S is at 
most 100, and we again use a list for result. What is the worst-case time now?



Spring 2014 MT2  |  Q6(d) Solutions

def umatches(S):
result = []
for item in S:

if item in result:
result.remove(item)

else:
result.append(item)

return result

Now suppose that we consider only cases where the number of different values in list S is at 
most 100, and we again use a list for result. What is the worst-case time now?
Answer: O(N). L is now upper bounded by 100, so Θ(L) becomes Θ(1).



Summer 2015 MT2  |  Q5(d)

def append(link, value):
"""Mutates LINK by adding VALUE to 
the end of LINK.
"""
if link.rest is Link.empty:

link.rest = Link(value)
else:

append(link.rest, value)

def extend(link1, link2):
"""Mutates LINK_1 so that all 
elements of LINK_2 are added to the 
end of LINK_1.
"""
while link2 is not Link.empty:

append(link1, link2.first)
link2 = link2.rest

(i) What order of growth describes the runtime of calling append? Give your function in terms 
of n, where n is the number of elements in the input LINK.

(ii) Assuming the two input linked lists both contain n elements, what order of growth best 
describes the runtime of calling extend?



Summer 2015 MT2  |  Q5(d) Solutions

def append(link, value):
"""Mutates LINK by adding VALUE to 
the end of LINK.
"""
if link.rest is Link.empty:

link.rest = Link(value)
else:

append(link.rest, value)

def extend(link1, link2):
"""Mutates LINK_1 so that all 
elements of LINK_2 are added to the 
end of LINK_1.
"""
while link2 is not Link.empty:

append(link1, link2.first)
link2 = link2.rest

(i) What order of growth describes the runtime of calling append? Give your function in terms 
of n, where n is the number of elements in the input LINK. Answer: O(n).

(ii) Assuming the two input linked lists both contain n elements, what order of growth best 
describes the runtime of calling extend? Answer: O(n2).



Summer 2012 Final  |  Q2(a)

def collide(n):
lst = []
for i in range(n):

lst.append(i)
if n <= 1:

return 1
if n <= 50:

return collide(n - 1) + collide(n - 2)
elif n > 50:

return collide(50) + collide(49)

What is the order of growth in n of the runtime of collide, where n is its input?



Summer 2012 Final  |  Q2(a) Solutions

def collide(n):
lst = []
for i in range(n): # O(n) block of code right here

lst.append(i)
if n <= 1:

return 1
if n <= 50:

return collide(n - 1) + collide(n - 2)
elif n > 50: # this covers the case we’re interested in (really large n)

return collide(50) + collide(49)

What is the order of growth in n of the runtime of collide, where n is its input?
Answer: O(n). For large n, it performs an O(n) list initialization and then runs collide(50) 
+ collide(49). Since 50 and 49 are constants, that part’s runtime is irrespective of n.



Summer 2012 Final  |  Q2(b)

def crash(n):
if n < 1:

return n
return crash(n - 1) * n

def into_me(n):
lst = []
for i in range(n):

lst.append(i)
sum = 0
for elem in lst:

sum = sum + crash(n) + crash(n)
return sum

What is the order of growth in n of the runtime 
of into_me, where n is its input?



Summer 2012 Final  |  Q2(b) Solutions

def crash(n): # O(n) function
if n < 1:

return n
return crash(n - 1) * n

def into_me(n):
lst = []
for i in range(n): # O(n)

lst.append(i)
sum = 0
for elem in lst: # do n times:

sum = sum + crash(n) + crash(n)
return sum

What is the order of growth in n of the runtime 
of into_me, where n is its input?
Answer: O(n2). We make 2n crash calls per into_me 
call, and the order of growth of crash is O(n).



Spring 2014 Final  |  Q5(c)

Give worst-case asymptotic Θ(·) bounds for the running time of the following code snippets. 
As a reminder, it is meaningful to write things with multiple arguments like Θ(a + b), which 
you can think of as “Θ(N) where N = a + b.”

def a(m, n):
for i in range(m):

for j in range(n // 100):
print(“hi”)

def b(m, n):
for i in range(m // 3):

print(“hi”)
for j in range(n * 5):

print(“bye”)

def d(m, n):
for i in range(m):

j = 0
while j < i: j = j + 100

def f(m):
i = 1
while i < m:

i = i * 2
return i



Spring 2014 Final  |  Q5(c) Solutions

Give worst-case asymptotic Θ(·) bounds for the running time of the following code snippets. 
As a reminder, it is meaningful to write things with multiple arguments like Θ(a + b), which 
you can think of as “Θ(N) where N = a + b.”

def a(m, n): # Answer: O(mn).
for i in range(m):

for j in range(n // 100):
print(“hi”)

def b(m, n): # Answer: O(m + n).
for i in range(m // 3):

print(“hi”)
for j in range(n * 5):

print(“bye”)

def d(m, n): # Answer: O(m2).
for i in range(m): # essentially 1 + … + m work

j = 0
while j < i: j = j + 100

def f(m): # Answer: O(logm).
i = 1
while i < m:

i = i * 2
return i



Thanks, everyone!
Hope you have a good time during the final. :)


